Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 183
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 20(3): e1012112, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38507423

RESUMO

Viruses are encapsidated mobile genetic elements that rely on host cells for replication. Several cytoplasmic RNA viruses synthesize proteins and/or RNAs that translocate to infected cell nuclei. However, the underlying mechanisms and role(s) of cytoplasmic-nuclear trafficking are unclear. We demonstrate that infection of small brown planthoppers with rice stripe virus (RSV), a negarnaviricot RNA virus, results in K63-linked polyubiquitylation of RSV's nonstructural protein 3 (NS3) at residue K127 by the RING ubiquitin ligase (E3) LsRING. In turn, ubiquitylation leads to NS3 trafficking from the cytoplasm to the nucleus, where NS3 regulates primary miRNA pri-miR-92 processing through manipulation of the microprocessor complex, resulting in accumulation of upregulated miRNA lst-miR-92. We show that lst-miR-92 regulates the expression of fibrillin 2, an extracellular matrix protein, thereby increasing RSV loads. Our results highlight the manipulation of intranuclear, cytoplasmic, and extracellular components by an RNA virus to promote its own replication in an insect vector.


Assuntos
Hemípteros , MicroRNAs , Oryza , Tenuivirus , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Tenuivirus/metabolismo , Regulação para Cima , Fibrilina-2/genética , Fibrilina-2/metabolismo , Replicação Viral , Oryza/genética , Doenças das Plantas
2.
Insect Sci ; 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38439572

RESUMO

Advanced DNA structures, such as the G-quadruplex (G4) and the i-motif, are widely but not randomly present in the genomes of many organisms. A G4 structure was identified in the promoter of the silk gland factor-1 gene (SGF1), which is the main regulatory gene for silk production in Bombyx mori. In this study, a BmSGF1 G4-/- homozygous mutant was generated with the G4 sequence knocked out. The promoter activity of BmSGF1 was lowered in the BmSGF1 G4-/- mutant. Pyridostatin (PDS) stabilized the G4 structure and increased the promoter activity of BmSGF1, whereas anti-sense oligonucleotide (ASO) complementary to the G4 sequence suppressed the promoter activity of BmSGF1. Compared with wild-type larvae, the deletion of the BmSGF1 G4 structure decreased both the expression of BmSGF1 and the fibroin heavy chain gene BmFib-H in the posterior silk gland and the weight of the cocoons. Overall, these results suggest that the promoter G4 structure of BmSGF1 participates in the transcription regulation of the BmSGF1 gene in the silkworm.

4.
Elife ; 122024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38391174

RESUMO

The dynamic interplay between guanine-quadruplex (G4) structures and pathogenicity islands (PAIs) represents a captivating area of research with implications for understanding the molecular mechanisms underlying pathogenicity. This study conducted a comprehensive analysis of a large-scale dataset from reported 89 pathogenic strains of bacteria to investigate the potential interactions between G4 structures and PAIs. G4 structures exhibited an uneven and non-random distribution within the PAIs and were consistently conserved within the same pathogenic strains. Additionally, this investigation identified positive correlations between the number and frequency of G4 structures and the GC content across different genomic features, including the genome, promoters, genes, tRNA, and rRNA regions, indicating a potential relationship between G4 structures and the GC-associated regions of the genome. The observed differences in GC content between PAIs and the core genome further highlight the unique nature of PAIs and underlying factors, such as DNA topology. High-confidence G4 structures within regulatory regions of Escherichia coli were identified, modulating the efficiency or specificity of DNA integration events within PAIs. Collectively, these findings pave the way for future research to unravel the intricate molecular mechanisms and functional implications of G4-PAI interactions, thereby advancing our understanding of bacterial pathogenicity and the role of G4 structures in pathogenic diseases.


Assuntos
Quadruplex G , Ilhas Genômicas , Ilhas Genômicas/genética , Bactérias/genética , DNA , Virulência/genética , Escherichia coli/genética , Genoma Bacteriano
5.
iScience ; 27(1): 108622, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38205256

RESUMO

Insects are susceptible to elevated temperatures, resulting in impaired fertility, and shortened lifespan. This study investigated the genetic mechanisms underlying heat stress effects. We conducted RNA sequencing on Pteromalus puparum exposed to 25°C and 35°C, revealing transcriptional signatures. Weighted Gene Co-expression Network Analysis uncovered heat stress-associated modules, forming a regulatory network of 113 genes. The network is naturally divided into two subgroups, one linked to acute heat stress, including heat shock proteins (HSPs), and the other to chronic heat stress, involving lipogenesis genes. We identified an Xap5 Heat Shock Regulator (XHSR) gene as a crucial network component, validated through RNA interference and quantitative PCR assays. XHSR knockdown reduced wasps' lifespan while directly inducing HSPs and mediating lipogenesis gene induction. CRISPR/Cas9-mediated knockout of the Drosophila XHSR homolog reduced mutants' survival, highlighting its conserved role. This research sheds light on thermal tolerance mechanisms, offering potential applications in pest control amid global warming.

6.
Pest Manag Sci ; 80(3): 1219-1227, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37899674

RESUMO

BACKGROUND: The ectoparasitic wasp Habrobracon hebetor (Hymenoptera, Braconidae) can parasitize various species of lepidopteran pests. To maximize its potential for biological control, it is necessary to investigate its gene function through genome engineering. RESULTS: To test the effectiveness of genome engineering system in H. hebetor, we injected the mixture of clustered regularly interspaced short palindromic repeats (CRISPR) -associated (Cas) 9 protein and single guide RNA(s) targeting gene white into embryos. The resulting mutants display a phenotype of eye pigment loss. The phenotype was caused by small indel and is heritable. Then, we compared some biological parameters between wildtype and mutant, and found there were no significant differences in other parameters except for the offspring female rate and adult longevity. In addition, cocoons could be used to extract genomic DNA for genotype during the gene editing process without causing unnecessary harm to H. hebetor. CONCLUSION: Our results demonstrate that the CRISPR/Cas9 system can be used for H. hebetor genome editing and it does not adversely affect biological parameters of the parasitoid wasps. We also provide a feasible non-invasive genotype detection method using genomic DNA extracted from cocoons. Our study introduces a novel tool and method for studying gene function in H. hebetor, and may contribute to better application of H. hebetor in biocontrol. © 2023 Society of Chemical Industry.


Assuntos
Vespas , Animais , Feminino , Vespas/metabolismo , Sistemas CRISPR-Cas , RNA Guia de Sistemas CRISPR-Cas , Mutagênese , DNA
7.
Ticks Tick Borne Dis ; 15(1): 102256, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37734164

RESUMO

Amblyomma americanum, also known as the lone star tick, is a small arachnid that feeds on blood and can spread disease to humans and other animals. Despite the overlapped ecological niche, geographic distribution, and host selection, there is no proof that A. americanum transmits the pathogen Borrelia burgdorferi that causes Lyme disease. Studies have shown that phospholipase A2 (PLA2) may act as a tool to eliminate B. burgdorferi, but particular PLA2 genes in A. americanum have not been identified and functionally characterized. Using the de novo sequencing method, we identified 42 putative A. americanum PLA2 (pAaPLA2) homologs in the present study, of which three pAaPLA2 had calcium binding sites and canonical histidine catalytic sites. Then, we determined phylogenetic relationships, sequence alignments, and conserved protein motifs of these pAaPLA2s. Protein structural analysis demonstrated that pAaPLA2s primarily consisted of α-helices, ß-sheets, and random coils. These genes were predicted to be engaged in the phospholipid metabolic process, arachidonic acid secretion, and PLA2 activity by functional annotation analysis. A transcriptional factor (Bgb) was discovered that interacted with pAaPLA2 proteins that may have unrecognized roles in regulating neuronal development. Based on the RNA-seq data, we surveyed expression profiles of key pAaPLA2-related genes to reveal putative modulatory networks of these genes. RNAi knockdown of pAaPLA2_1, a dominant isoform in A. americanum, led to decreased bacterial inhibition ability, suggesting pAaPLA2 may play an important role in mediating immune responses. Collectively, this study provides essential evidence of the identification, gene structure, phylogeny, and expression analysis of pAaPLA2 genes in A. americanum, and offers a deeper understanding of the putative borreliacidal roles in the lone star tick.


Assuntos
Amblyomma , Ixodidae , Humanos , Animais , Amblyomma/genética , Ixodidae/microbiologia , Interferência de RNA , Filogenia , Fosfolipases A2/genética , Perfilação da Expressão Gênica
8.
Res Sq ; 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37961723

RESUMO

Yersinia pestis is the causative agent of bubonic plague, a deadly flea-borne disease responsible for three historic pandemics. Today annual cases of human disease occur worldwide following exposure to Y. pestis infected fleas that can be found within the rodent population where plague activity cycles between epizootic outbreaks and extended periods of apparent quiescence. Flea transmission of Y. pestis is most efficient in "blocked" fleas that are unable to feed, whereas mammalian transmission to fleas requires a susceptible host with end-stage high titer bacteremia. These facts suggest alternative mechanisms of transmission must exist to support the persistence of Y. pestis between epizootic outbreaks. In this work, we addressed whether vertical transmission could be a mechanism for persistent low-infection across generations of fleas. We demonstrate that Y. pestis infection of the Oriental rat flea, Xenopyslla cheopis, spreads to the reproductive tissues and is found in eggs produced by infected adult fleas. We further show that vertical transmission of Y. pestis from eggs to adults results in midgut colonization indicating a strong probability that it can reenter the sylvatic plague cycle.

9.
Front Endocrinol (Lausanne) ; 14: 1277439, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37854192

RESUMO

Bursicon, a neuropeptide hormone comprising two subunits-bursicon (burs) and partner of burs (pburs), belongs to the cystine-knot protein family. Bursicon heterodimers and homodimers bind to the lucine-rich G-protein coupled receptor (LGR) encoded by rickets to regulate multiple physiological processes in arthropods. Notably, these processes encompass the regulation of female reproduction, a recent revelation in Tribolium castaneum. In this study we investigated the role of burs/pburs/rickets in mediating female vitellogenesis and reproduction in a hemipteran insect, the whitefly, Bemisia tabaci. Our investigation unveiled a synchronized expression of burs, pburs and rickets, with their transcripts persisting detectable in the days following eclosion. RNAi-mediated knockdown of burs, pburs or rickets significantly suppressed the transcript levels of vitellogenin (Vg) and Vg receptor in the female whiteflies. These effects also impaired ovarian maturation and female fecundity, as evidenced by a reduction in the number of eggs laid per female, a decrease in egg size and a decline in egg hatching rate. Furthermore, knockdown of burs, pburs or rickets led to diminished juvenile hormone (JH) titers and reduced transcript level of Kruppel homolog-1. However, this impact did not extend to genes in the insulin pathway or target of rapamycin pathway, deviating from the results observed in T. castaneum. Taken together, we conclude that burs/pburs/rickets regulates the vitellogenesis and reproduction in the whiteflies by coordinating with the JH signaling pathway.


Assuntos
Hemípteros , Hormônios de Invertebrado , Neuropeptídeos , Raquitismo , Animais , Feminino , Hemípteros/genética , Hemípteros/metabolismo , Hormônios de Invertebrado/genética , Hormônios de Invertebrado/metabolismo , Hormônios Juvenis , Vitelogênese
10.
Front Endocrinol (Lausanne) ; 14: 1256618, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37693356

RESUMO

Introduction: The lone star tick, Amblyomma americanum, is an important ectoparasite known for transmitting diseases to humans and animals. Ecdysis-related neuropeptides (ERNs) control behaviors crucial for arthropods to shed exoskeletons. However, ERN identification and characterization in A. americanum remain incomplete. Methods: We investigated ERNs in A. americanum, assessing their evolutionary relationships, protein properties, and functions. Phylogeny, sequence alignment, and domain structures of ERNs were analyzed. ERN functionality was explored using enrichment analysis, and developmental and tissue-specific ERN expression profiles were examined using qPCR and RNAi experiments. Results and discussion: The study shows that ERN catalogs (i.e., eclosion hormone, corazonin, and bursicon) are found in most arachnids, and these ERNs in A. americanum have high evolutionary relatedness with other tick species. Protein modeling analysis indicates that ERNs primarily consist of secondary structures and protein stabilizing forces (i.e., hydrophobic clusters, hydrogen bond networks, and salt bridges). Gene functional analysis shows that ENRs are involved in many ecdysis-related functions, including ecdysis-triggering hormone activity, neuropeptide signaling pathway, and corazonin receptor binding. Bursicon proteins have functions in chitin binding and G protein-coupled receptor activity and strong interactions with leucine-rich repeat-containing G-protein coupled receptor 5. ERNs were expressed in higher levels in newly molted adults and synganglia. RNAi-mediated knockdown of burs α and burs ß expression led to a significant decrease in the expression of an antimicrobial peptide, defensin, suggesting they might act in signaling or regulatory pathways that control the expression of immune-related genes. Arthropods are vulnerable immediately after molting because new cuticles are soft and susceptible to injury and pathogen infections. Bursicon homodimers act in prophylactic immunity during this vulnerable period by increasing the synthesis of transcripts encoding antimicrobial peptides to protect them from microbial invasion. Collectively, the expression pattern and characterization of ERNs in this study contribute to a deeper understanding of the physiological processes in A. americanum.


Assuntos
Amblyomma , Artrópodes , Adulto , Animais , Humanos , Muda/genética , Transdução de Sinais , Peptídeos Antimicrobianos
11.
Arch Insect Biochem Physiol ; 114(3): e22048, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37602789

RESUMO

Niemann-Pick C (NPC) disease is a neurodegenerative disorder related to cellular sterol trafficking and mutation of NPC1 gene is the main cause for this disease. The function of NPC1 have been reported in a few insects but rarely studied in hemipterans. In the present study, we investigate the function of NPC1 in a hemipteran pest, the whitefly Bemisia tabaci. It was found that B. tabaci had only one NPC1 homolog (BtNPC1), in contrast to two homologs in many other insects. BtNPC1 was ubiquitously expressed at all developmental stages and body parts of whiteflies, with the highest level in adult abdomen, and the expression of BtNPC1 was induced by cholesterol feeding. To further investigate the function of BtNPC1, leaf-mediated RNA interference experiments were carried out. Results showed that knockdown of BtNPC1 led to reduced survival of whiteflies, as well as reduced fecundity. Moreover, knockdown of BtNPC1 affected the development and metamorphosis of whitefly nymphs. Taken these together, we conclude that BtNPC1 played a crucial role in sterol-related biological processes of B. tabaci and might be used as an insecticide target for development of novel pest management approaches.

12.
Front Cell Infect Microbiol ; 13: 1236785, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37583446

RESUMO

Ticks are ectoparasites that can transmit various pathogens capable of causing life-threatening illnesses in people and animals, making them a severe public health threat. Understanding how ticks respond to bacterial infection is crucial for deciphering their immune defense mechanisms and identifying potential targets for controlling tick-borne diseases. In this study, an in-depth transcriptome analysis was used to investigate the molecular and immune responses of Amblyomma americanum to infection caused by the microinjection of Escherichia coli. With an abundance of differentially expressed genes discovered at different times, the analysis demonstrated significant changes in gene expression profiles in response to E. coli challenge. Notably, we found alterations in crucial immune markers, including the antimicrobial peptides defensin and microplusin, suggesting they may play an essential role in the innate immune response. Furthermore, KEGG analysis showed that following E. coli exposure, a number of key enzymes, including lysosomal alpha-glucosidase, fibroblast growth factor, legumain, apoptotic protease-activating factor, etc., were altered, impacting the activity of the lysosome, mitogen-activated protein kinase, antigen processing and presentation, bacterial invasion, apoptosis, and the Toll and immune deficiency pathways. In addition to the transcriptome analysis, we constructed protein interaction networks to elucidate the molecular interactions underlying the tick's response to E. coli challenge. Hub genes were identified, and their functional enrichment provided insights into the regulation of cytoskeleton rearrangement, apoptotic processes, and kinase activity that may occur in infected cells. Collectively, the findings shed light on the potential immune responses in A. americanum that control E. coli infection.


Assuntos
Ixodidae , Carrapatos , Animais , Amblyomma , Ixodidae/microbiologia , Escherichia coli/genética , Imunidade Inata
13.
Int J Mol Sci ; 24(13)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37445878

RESUMO

C-type lectins (CTLs) are a class of proteins containing carbohydrate recognition domains (CRDs), which are characteristic modules that recognize various glycoconjugates and function primarily in immunity. CTLs have been reported to affect growth and development and positively regulate innate immunity in Tribolium castaneum. However, the regulatory mechanisms of TcCTL16 proteins are still unclear. Here, spatiotemporal analyses displayed that TcCTL16 was highly expressed in late pupae and early adults. TcCTL16 RNA interference in early larvae shortened their body length and narrowed their body width, leading to the death of 98% of the larvae in the pupal stage. Further analysis found that the expression level of muscle-regulation-related genes, including cut, vestigial, erect wing, apterous, and spalt major, and muscle-composition-related genes, including Myosin heavy chain and Myosin light chain, were obviously down-regulated after TcCTL16 silencing in T. castaneum. In addition, the transcription of TcCTL16 was mainly distributed in the hemolymph. TcCTL16 was significantly upregulated after challenges with lipopolysaccharides, peptidoglycans, Escherichia coli, and Staphylococcus aureus. Recombinant CRDs of TcCTL16 bind directly to the tested bacteria (except Bacillus subtilis); they also induce extensive bacterial agglutination in the presence of Ca2+. On the contrary, after TcCTL16 silencing in the late larval stage, T. castaneum were able to develop normally. Moreover, the transcript levels of seven antimicrobial peptide genes (attacin2, defensins1, defensins2, coleoptericin1, coleoptericin2, cecropins2, and cecropins3) and one transcription factor gene (relish) were significantly increased under E. coli challenge and led to an increased survival rate of T. castaneum when infected with S. aureus or E. coli, suggesting that TcCTL16 deficiency could be compensated for by increasing AMP expression via the IMD pathways in T. castaneum. In conclusion, this study found that TcCTL16 could be involved in developmental regulation in early larvae and compensate for the loss of CTL function by regulating the expression of AMPs in late larvae, thus laying a solid foundation for further studies on T. castaneum CTLs.


Assuntos
Tribolium , Animais , Tribolium/genética , Escherichia coli/metabolismo , Staphylococcus aureus/metabolismo , Imunidade Inata/genética , Bactérias/metabolismo , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Larva/metabolismo
14.
Int J Biol Macromol ; 247: 125840, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37454995

RESUMO

Bursicon is a cystine knot family neuropeptide, composed of two subunits, bursicon (burs) and partner of burs (pburs). The subunits can form heterodimers to regulate cuticle tanning and wing maturation and homodimers to signal different biological functions in innate immunity, midgut stem cell proliferation and energy homeostasis, and reproductive physiology in the model insects Drosophila melanogaster or Tribolium castaneum. Here, we report on the role of the pburs homodimer in signaling innate immunity in T. castaneum larvae. Through transcriptome analysis we identified a set of immune-related genes that respond to pburs RNAi. Treating larvae with recombinant-pburs protein led to up-regulation of antimicrobial peptide (AMP) genes in vivo and in vitro. The upregulation of most AMP genes was dependent on the NF-κB transcription factor Relish. Most importantly, we identified a novel AMP, Tenecin 3-like peptide (Ten3LP), regulated by pburs via NF-κB transcription factor Dorsal-related immunity factor (Dif)/Dorsal2, but not Relish. We conducted Ten3LP RNAi, synthesized recombinant Ten3LP protein for microbial inhibition assays and functionally characterized Ten3LP as an AMP specific for fungi and Gram-positive bacteria. We demonstrate that expression of Ten3LP is activated by pburs via the Toll pathway. These findings identify new molecular targets for development of potential antibiotics for treating microbial infections and perhaps for RNAi based pest management technology.


Assuntos
Proteínas de Drosophila , Neuropeptídeos , Tribolium , Animais , Drosophila melanogaster/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Tribolium/genética , Tribolium/metabolismo , Neuropeptídeos/genética , Peptídeos Antimicrobianos , Imunidade Inata/genética , Proteínas de Ligação a DNA , Fatores de Transcrição/genética , Proteínas de Drosophila/metabolismo
15.
Insects ; 14(6)2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37367331

RESUMO

The transforming growth factor-ß (TGF-ß) superfamily in insects regulated various physiological events, including immune response, growth and development, and metamorphosis. This complex network of signaling pathways involves conserved cell-surface receptors and signaling co-receptors that allow for precisely coordinated cellular events. However, the roles of TGF-ß receptors, particularly the type II receptor Punt, in mediating the innate immunity in insects remains unclear. In this study, we used the red flour beetle, Tribolium castaneum, as a model species to investigate the role of TGF-ß type II receptor Punt in mediating antimicrobial peptide (AMP) expression. Developmental and tissue-specific transcript profiles revealed Punt was constitutively expressed throughout development, with the highest transcript level in 1-day female pupae and the lowest transcript level in 18-day larvae. Tissue specific expression profiles showed the highest transcript level of Punt was observed in the Malpighian tubule and ovary in 18-day larvae and 1-day female adults, respectively, suggesting Punt might have distinct functions in larvae and adults. Further results indicated that Punt RNAi in the 18-day larvae led to increased transcript level of AMP genes through transcription factor Relish, leading to inhibition of Escherichia coli proliferation. Knockdown of Punt in larvae also led to splitting of adult elytra and abnormal compound eyes. Furthermore, knockdown of Punt during the female pupal stage resulted in increased transcript levels of AMP genes, as well as abnormal ovary, reduced fecundity, and failure of eggs to hatch. This study deepens our understanding of the biological significance of Punt in insect TGF-ß signaling and lays the groundwork for further research of its role in insect immune response, development, and reproduction.

16.
Toxins (Basel) ; 15(6)2023 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-37368678

RESUMO

Habrobracon hebetor is a parasitoid wasp capable of infesting many lepidopteran larvae. It uses venom proteins to immobilize host larvae and prevent host larval development, thus playing an important role in the biocontrol of lepidopteran pests. To identify and characterize its venom proteins, we developed a novel venom collection method using an artificial host (ACV), i.e., encapsulated amino acid solution in paraffin membrane, allowing parasitoid wasps to inject venom. We performed protein full mass spectrometry analysis of putative venom proteins collected from ACV and venom reservoirs (VRs) (control). To verify the accuracy of proteomic data, we also collected venom glands (VGs), Dufour's glands (DGs) and ovaries (OVs), and performed transcriptome analysis. In this paper, we identified 204 proteins in ACV via proteomic analysis; compared ACV putative venom proteins with those identified in VG, VR, and DG via proteome and transcriptome approaches; and verified a set of them using quantitative real-time polymerase chain reaction. Finally, 201 ACV proteins were identified as potential venom proteins. In addition, we screened 152 and 148 putative venom proteins identified in the VG transcriptome and the VR proteome against those in ACV, and found only 26 and 25 putative venom proteins, respectively, were overlapped with those in ACV. Altogether, our data suggest proteome analysis of ACV in combination with proteome-transcriptome analysis of other organs/tissues will provide the most comprehensive identification of true venom proteins in parasitoid wasps.


Assuntos
Vespas , Animais , Vespas/química , Proteômica , Proteoma/metabolismo , Multiômica , Venenos de Vespas/química , Larva/metabolismo , Proteínas de Insetos/metabolismo , Interações Hospedeiro-Parasita
17.
Ecotoxicol Environ Saf ; 254: 114761, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36907089

RESUMO

Insect hormones, such as juvenile hormone (JH), precisely regulate insect life-history traits. The regulation of JH is tightly associated with the tolerance or resistance to Bacillus thuringiensis (Bt). JH esterase (JHE) is a primary JH-specific metabolic enzyme which plays a key role in regulating JH titer. Here, we characterized a JHE gene from Plutella xylostella (PxJHE), and found it was differentially expressed in the Bt Cry1Ac resistant and susceptible strains. Suppression of PxJHE expression with RNAi increased the tolerance of P. xylostella to Cry1Ac protoxin. To investigate the regulatory mechanism of PxJHE, two target site prediction algorithms were applied to predict the putative miRNAs targeting PxJHE, and the resulting putative miRNAs were subsequently verified for their function targeting PxJHE using luciferase reporter assay and RNA immunoprecipitation. MiR-108 or miR-234 agomir delivery dramatically reduced PxJHE expression in vivo, whilst only miR-108 overexpression consequently increased the tolerance of P. xylostella larvae to Cry1Ac protoxin. By contrast, reduction of miR-108 or miR-234 dramatically increased PxJHE expression, accompanied by the decreased tolerance to Cry1Ac protoxin. Furthermore, injection of miR-108 or miR-234 led to developmental defects in P. xylostella, whilst injection of antagomir did not cause any obvious abnormal phenotypes. Our results indicated that miR-108 or miR-234 can be applied as potential molecular targets to combat P. xylostella and perhaps other lepidopteran pests, providing novel insights into miRNA-based integrated pest management.


Assuntos
Bacillus thuringiensis , MicroRNAs , Mariposas , Animais , Mariposas/genética , Mariposas/metabolismo , Endotoxinas/genética , Endotoxinas/toxicidade , Endotoxinas/metabolismo , Toxinas de Bacillus thuringiensis , Larva/metabolismo , Bacillus thuringiensis/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/toxicidade , Proteínas Hemolisinas/metabolismo , Resistência a Inseticidas/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
18.
Sci Total Environ ; 854: 158841, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36116647

RESUMO

Cadmium (Cd) induces severe soil pollution worldwide and exerts adverse effects on paddy field arthropods. Spiders grant a novel perspective to assess the Cd-induced toxicity, yet the impacts of long-term Cd stress on spider silk glands and its underlying mechanism remain elusive. The study showed that Cd stress enervated the antioxidant system in the spider Pardosa pseudoannulata, manifested as the decreases of glutathione peroxidase and peroxidase, and the increase of malonaldehyde (p < 0.05). In addition, a total of 1459 differentially expressed genes (DEGs) and 404 differentially expressed proteins (DEPs) were obtained from the silk glands' transcriptome and proteome. DEGs and DEPs encoding spidroin (e.g., tubuliform spidroin and ampullate spidroin) and amino acids metabolism (e.g., alanine, proline, and glycine) were distinctively down-regulated. Further enrichment analysis verified that Cd stress could inhibit amino acid metabolism via the down-regulation of several key enzymes, including glutathione synthase, methylthioadenosine phosphorylase, S-adenosylmethionine synthetase, etc. In addition, the hedgehog signaling pathway regulating cellular growth and development was down-regulated under Cd stress. A protein-protein interaction network showed that long-term Cd stress could inhibit some key biological processes in the silk glands, including peptide biosynthetic process and cytoskeleton part. Collectively, this comprehensive study established an effective animal detection model for evaluating Cd-induced toxicity, presented key biomarkers for further validation, and provided novel insights to investigate the molecular mechanisms of spiders to Cd pollution.


Assuntos
Fibroínas , Aranhas , Animais , Transcriptoma , Cádmio/toxicidade , Proteoma , Proteínas Hedgehog , Poluição Ambiental
20.
Arch Insect Biochem Physiol ; 111(3): e21954, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36065122

RESUMO

Cytochrome P450 monooxygenases (CYPs) are present in almost all areas of the tree of life. As one of the largest and most diverse superfamilies of multifunctional enzymes, they play important roles in the metabolism of xenobiotics and biosynthesis of endogenous compounds, shaping the success of insects. In this study, the CYPome (an omics term for all the CYP genes in a genome) diversification was examined in the four Tenebrionidea species through genome-wide analysis. A total of 483 CYP genes were identified, of which 103, 157, 122, and 101 were respectively deciphered from the genomes of Tebebrio molitor, Asbolus verucosus, Hycleus cichorii and Hycleus phaleratus. These CYPs were classified into four major clans (mitochondrial, CYP2, CYP3, and CYP4), and clans CYP3 and CYP4 are most diverse. Phylogenetic analysis showed that most CYPs of these Tenebrionidea beetles from each clan had a very close 1:1 orthology to each other, suggesting that they originate closely and have evolutionally conserved function. Expression analysis at different developmental stages and in various tissues showed the life stage-, gut-, salivary gland-, fat body-, Malpighian tubule-, antennae-, ovary- and testis-specific expression patterns of T. molitor CYP genes, implying their various potential roles in development, detoxification, immune response, digestion, olfaction, and reproduction. Our studies provide a platform to understand the evolution of Tenebrionidea CYP gene superfamily, and a basis for further functional investigation of the T. molitor CYPs involved in various biological processes.


Assuntos
Besouros , Xenobióticos , Animais , Besouros/genética , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Genoma , Enzimas Multifuncionais/genética , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...